

Revision 0.70

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General	Product	: Infor	mation

Product	Application
1060 nm DFB Laser with hermetic Butterfly Housing	Spectroscopy
Monitor Diode, Thermoelectric Cooler and Thermistor	Metrology
PM Fiber with angle-polished Connector	THz Generation
ROHS compliant	

Absolute Maximum Ratings

	Symbol	Unit	min	typ	max
Storage Temperature	T _S	°C	-40		85
Operational Temperature at Case	T_{C}	°C	-40		85
Operational Temperature at Laser Chip	T_{LD}	°C	10		50
Forward Current	I _F	mA			180
Reverse Voltage	V_R	V			2
Output Power	P_{opt}	mW			50
TEC Current	I _{TEC}	А			1.8
TEC Voltage	V_{TEC}	V			3.2

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings can cause permanent damage to the device.

Recommended Operational Conditions

Symbol	Unit	min	typ	max
T _C	°C	-20		65
T_{LD}	°C	15		40
I _F	mA			170
P _{opt}	mW	10		40
	T _C T _{LD}	T _C °C T _{LD} °C I _F mA	T_{C} °C -20 T_{LD} °C 15 I_{F} mA	T _C °C -20 T _{LD} °C 15 I _F mA

Measurement Conditions / Comments
measured with integrated thermistor

Characteristics at T_{LD} = 25 °C at Begin Of Life

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	1059	1060	1061
Tuning Range by Temperature	$\Delta \lambda_{T}$	nm		1.5	
Spectral Width (FWHM)	Δν	MHz		2	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dI	nm / mA		0.003	
Output Power @ I _F : 170 mA	P _{opt}	mW	40		

Measurement Conditions / Comments

The laser allows wavelength tuning by temperature or current variation; in case of external backreflections small mode-hops of 100 MHz or less may appear; the use of a BFW01 or TOC03 package variants and effective optical isolation is recommended for spectroscopic application requiring absolutely mode-hop-free tuning

Revision 0.70

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at T _{amb} 25 °C at Begin Of Life cont'c						
December	Completed	11-4		.		
Parameter	Symbol	Unit	min	typ	max	
Slope Efficiency	η	W/A	0.2	0.4	0.7	
Threshold Current	I _{th}	mA			70	
Sidemode Supression Ratio	SMSR	dB	30	50		
Polarization Extinction Ratio	PER	dB		20		

Measurement Conditions / Comments					
P _{opt} = 10 mW 40 mW ; T _{LD} = 15 °C 40 °C					
$P_{opt} = 40 \text{ mW}$					

Monitor Diode					
Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} /P _{opt}	μA/mW	1		20
Monitor Detector Responsivity	I_{mon}/P_{opt}	μA/mW	1		

Measurement Conditions / Comments
Reverse Voltage $U_{R MD} = 5 V$

THE THOSECUTE COOLER					
Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U_TEC	V		0.8	
Power Dissipation (total loss at case)	P _{loss}	W		0.4	
Temperature Difference	ΔΤ	K			50

Measurement (Conditions / Comments	
$P_{opt} = 40 \text{ mW},$	$\Delta T = 20 \text{ K}$	
$P_{opt} = 40 \text{ mW},$	$\Delta T = 20 \text{ K}$	
$P_{opt} = 40 \text{ mW},$	$\Delta T = 20 \text{ K}$	
$P_{opt} = 40 \text{ mW},$	$\Delta T = I T_{case} - T_{LD} I$	

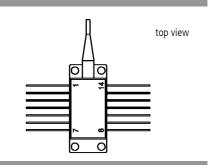
Symbol R	Unit kΩ	min	typ 10	max
R	kΩ		10	
ρ				
р			3892	
А		1	1.1293 x 10 ⁻³	3
В		2	2.3410 x 10 ⁻⁶	4
С		8	3.7755 x 10 ⁻¹	8
			В	1.1233 X 10

Measurement Conditions / Comments						
T = 25° C						
$R_1/R_2 = e^{~\beta~(1/T_1\cdot1/T_2)}$ at $T=0^\circ\dots50^\circ$ C						
$1/T = A + B(\ln R) + C(\ln R)^3$						
T: temperature in Kelvin						
R: resistance at T im Ohm						

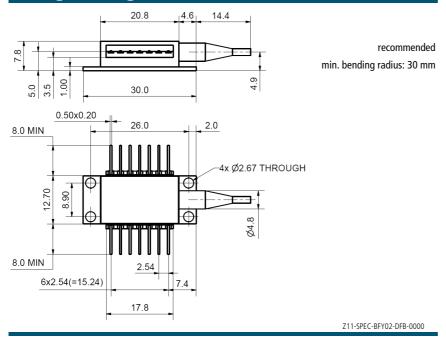
Revision 0.70

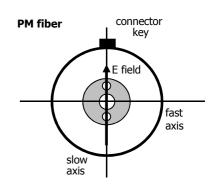
SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Fiber and Connector Type


PM Fiber	900 / 125 / 5.5 μ m, UV/Polyester-elastomer Coating (I = 1 +/-0.1 m)
Connector	FC/APC (narrow key / 2mm)

Measurement Conditions / Comments


other connectors on request


Package Pinout

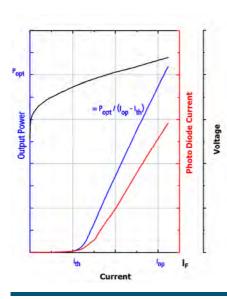
1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photodiode (Anode)	12	not connected
4	Photodiode (Cathode)	11	Laser Diode (Cathode)
5	Thermistor	10	Laser Diode (Anode)
6	not connected	9	not connected
7	not connected	8	not connected

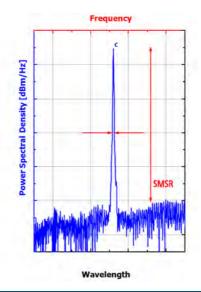
Package Drawings

slow axis of the PM fiber aligned to connector key

TOPTICA EAGLEVARD

Revision 0.70

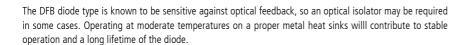

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser



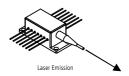
Typical Measurement Results

Output Power vs. Current

Spectra at Specified Optical Output Power



Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.


Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

