

Revision 0.91

2020-11-11

## SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

#### General Product Information

| Product                                                       | Application    |
|---------------------------------------------------------------|----------------|
| Tunable 780 nm DFB Laser                                      | Spectroscopy   |
| with hermetic 14-Pin Butterfly Housing (RoHS compliant)       | Metrology      |
| including Monitor Diode, Thermoelectric Cooler and Thermistor | THz Generation |
| with integrated Beam Collimation                              |                |



#### Absolute Maximum Ratings

| Symbol           | Unit                                                                                                                          | min                                                                                                                                               | typ                                                    | max                                                                              |
|------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------|
| Ts               | °C                                                                                                                            | -40                                                                                                                                               |                                                        | 85                                                                               |
| T <sub>C</sub>   | °C                                                                                                                            | -40                                                                                                                                               |                                                        | 85                                                                               |
| T <sub>LD</sub>  | °C                                                                                                                            | 10                                                                                                                                                |                                                        | 50                                                                               |
| I <sub>F</sub>   | mA                                                                                                                            |                                                                                                                                                   |                                                        | 190                                                                              |
| V <sub>R</sub>   | V                                                                                                                             |                                                                                                                                                   |                                                        | 2                                                                                |
| P <sub>opt</sub> | mW                                                                                                                            |                                                                                                                                                   |                                                        | 90                                                                               |
| I <sub>TEC</sub> | А                                                                                                                             |                                                                                                                                                   |                                                        | 1.1                                                                              |
| V <sub>TEC</sub> | V                                                                                                                             |                                                                                                                                                   |                                                        | 2.8                                                                              |
|                  | T <sub>s</sub><br>T <sub>c</sub><br>T <sub>LD</sub><br>I <sub>F</sub><br>V <sub>R</sub><br>V <sub>R</sub><br>I <sub>TEC</sub> | $\begin{array}{c c} T_{S} & \circ C \\ T_{C} & \circ C \\ T_{LD} & \circ C \\ I_{F} & mA \\ V_{R} & V \\ P_{opt} & mW \\ I_{TEC} & A \end{array}$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | Ts °C -40   T_c °C -40   T_LD °C 10   I_F mA VR   V_R V V   Popt mW I   I_EC A I |

#### **Recommended Operational Conditions**

| Symbol            | Unit                                                   | min                                                             | typ                                                                    | max                                             |
|-------------------|--------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------|
| T <sub>case</sub> | °C                                                     | -20                                                             |                                                                        | 65                                              |
| T <sub>LD</sub>   | °C                                                     | 15                                                              |                                                                        | 45                                              |
| I <sub>F</sub>    | mA                                                     |                                                                 |                                                                        | 180                                             |
| P <sub>opt</sub>  | mW                                                     | 20                                                              |                                                                        | 80                                              |
|                   | T <sub>case</sub><br>T <sub>LD</sub><br>I <sub>F</sub> | T <sub>case</sub> °C<br>T <sub>LD</sub> °C<br>I <sub>F</sub> mA | T <sub>case</sub> °C -20<br>T <sub>LD</sub> °C 15<br>I <sub>F</sub> mA | $T_{case}$ °C -20<br>$T_{LD}$ °C 15<br>$I_F$ mA |

#### Characteristics at $T_{LD}$ = 25° C at BOL

| Parameter                             | Symbol                 | Unit    | min | typ   | max |
|---------------------------------------|------------------------|---------|-----|-------|-----|
| Center Wavelength                     | λ <sub>c</sub>         | nm      | 779 | 780   | 781 |
| Linewidth (FWHM)                      | Δλ                     | MHz     |     | 2     |     |
| Mode-hop free Tuning Range            | $\Delta\lambda_{tune}$ | pm      |     | 1500  |     |
| Sidemode Supression Ratio             | SMSR                   | dB      | 30  | 50    |     |
| Temperature Coefficient of Wavelength | dλ / dT                | nm / K  |     | 0.06  |     |
| Current Coefficient of Wavelength     | dλ / dl                | nm / mA |     | 0.003 |     |

eagleyard Photonics GmbH Rudower Chaussee 29 12489 Berlin GERMANY www.eagleyard.com info@eagleyard.com fon +49.30.6392 4520

#### Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

#### Measurement Conditions / Comments

| measured by integrated Thermistor |
|-----------------------------------|
|                                   |
|                                   |
|                                   |

#### Measurement Conditions / Comments

| see imag      | ges on page 4             |
|---------------|---------------------------|
| $P_{opt} = 8$ | 0 mW                      |
|               |                           |
| reached       | by temperature modulation |
| $P_{opt} = 8$ | 0 mW                      |
|               |                           |
|               |                           |
|               |                           |

This data sheet is subject to change without notice. © eagleyard Photonics

Revision 0.91

### SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

| Characteristics at $T_{LD}$ = 25° C a        | at BOL           |       |     |     | cont'd |
|----------------------------------------------|------------------|-------|-----|-----|--------|
| Parameter                                    | Symbol           | Unit  | min | typ | max    |
| Mode-hop free Temperature Range              | T <sub>LD</sub>  | ° C   | 15  |     | 40     |
| Mode-hop free Power Range                    | P <sub>opt</sub> | mW    | 20  |     | 80     |
| Laser Current @ $P_{opt} = 80 \text{ mW}$    | $I_{LD}$         | mA    |     |     | 180    |
| Slope Efficiency                             | η                | W / A | 0.6 | 0.8 | 1.1    |
| Threshold Current                            | l <sub>th</sub>  | mA    |     |     | 70     |
| Divergence parallel (FWHM)                   | $\Theta_{  }$    | 0     |     | 0.1 |        |
| Divergence perpendicular (FWHM)              | $\Theta_{\perp}$ | 0     |     | 0.1 |        |
| Beam Diameter horizontal (1/e <sup>2</sup> ) | d                | mm    |     | 1.0 | 1.2    |
| Beam Diameter vertical (1/e <sup>2</sup> )   | $d_\perp$        | mm    |     | 0.8 | 1.2    |

### Measurement Conditions / Comments Temperature at Laser Chip

parallel to the base plate of the housing (see p. 3) perpendicular to base plate of the housing (see p. 3) parallel to the base plate of the housing (see p. 3) perpendicular to base plate of the housing (see p. 3)

#### Monitor Diode

| Devementer                    | Cumbal                              | Unit  | min | ta un |     |
|-------------------------------|-------------------------------------|-------|-----|-------|-----|
| Parameter                     | Symbol                              | Unit  | min | typ   | max |
| Monitor Detector Responsivity | I <sub>mon</sub> / P <sub>opt</sub> | µA/mW | 1   |       | 20  |

#### Thermoelectric Cooler

| Symbol           | Unit                                 | min                                      | typ                                      | max                                              |
|------------------|--------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------------|
| I <sub>TEC</sub> | А                                    |                                          | 0.4                                      |                                                  |
| U <sub>TEC</sub> | V                                    |                                          | 1.3                                      |                                                  |
| Ploss            | W                                    |                                          | 0.5                                      |                                                  |
| ΔΤ               | К                                    |                                          |                                          | 50                                               |
|                  | I <sub>tec</sub><br>U <sub>tec</sub> | I <sub>TEC</sub> A<br>U <sub>TEC</sub> V | I <sub>TEC</sub> A<br>U <sub>TEC</sub> V | I <sub>TEC</sub> A 0.4<br>U <sub>TEC</sub> V 1.3 |

#### Thermistor (Standard NTC Type)

| Parameter                      | Symbol | Unit | min | typ         | max  |
|--------------------------------|--------|------|-----|-------------|------|
| Resistance                     | R      | kΩ   |     | 10          |      |
| Beta Coefficient               | β      |      |     | 3892        |      |
| Steinhart & Hart Coefficient A | А      |      |     | 1.1293 x 10 | ) -3 |
| Steinhart & Hart Coefficient B | В      |      |     | 2.3410 x 10 | ) -4 |
| Steinhart & Hart Coefficient C | С      |      |     | 8.7755 x 10 | ) -8 |
|                                |        |      |     |             |      |

 $\label{eq:measurement} \begin{array}{ll} \mbox{Measurement Conditions / Comments} \\ \mbox{U}_{R} = & 5 \ \mbox{V} \end{array}$ 

| Measurement Conditions / Comments                   |
|-----------------------------------------------------|
| $P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$  |
| $P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$  |
| $P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$  |
| $P_{opt} = 80 \text{ mW}, \Delta T =  Tcase - TLD $ |
|                                                     |

| $T_{LD} = 25^{\circ} C$                          |          |
|--------------------------------------------------|----------|
| $R_1/R_2 = e^{\beta(1/T_1-1/T_2)}$ at $T_{LD} =$ | 0° 50° C |
| $1/T = A + B(\ln R) + C(\ln R)^{3}$              |          |
| T: temperature in Kelvin                         |          |
| R: resistance at T in Ohm                        |          |

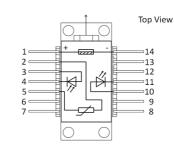
eagleyard Photonics GmbH Rudower Chaussee 29 12489 Berlin GERMANY www.eagleyard.com info@eagleyard.com fon +49.30.6392 4520

This data sheet is subject to change without notice. © eagleyard Photonics

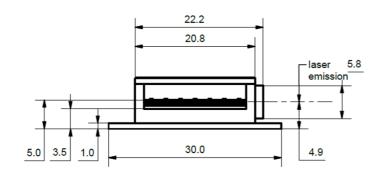


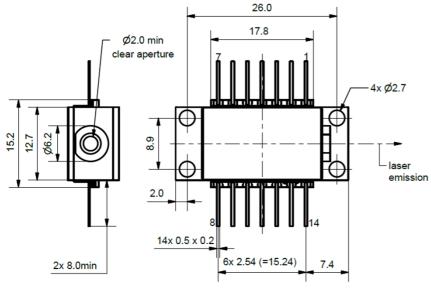
2020-11-11




Revision 0.91

2020-11-11


## SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser


#### Pin Assignment

| 1                                                   | Thermoelectric Cooler (+) | 14 | Thermoelectric Cooler (-) |
|-----------------------------------------------------|---------------------------|----|---------------------------|
| 2                                                   | Thermistor                | 13 | Case                      |
| 3                                                   | Photodiode (Anode)        | 12 | not connected             |
| 4                                                   | Photodiode (Cathode)      | 11 | Laser Diode (Cathode)     |
| 5                                                   | Thermistor                | 10 | Laser Diode (Anode)       |
| 6                                                   | not connected             | 9  | not connected             |
| 7                                                   | not connected             | 8  | not connected             |
| Pins are isolated from case unless noted otherwise. |                           |    |                           |



#### Package Drawings





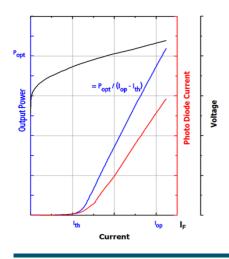
Liser emission

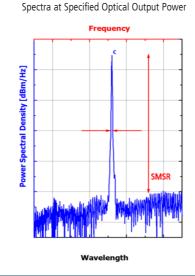
Caution. Excessive mechanical stress on the package can lead to a damage of the laser.

See <u>instruction manual</u> on www.eagleyard.com

AIZ-20-1029-0928

eagleyard Photonics GmbH Rudower Chaussee 29 12489 Berlin GERMANY www.eagleyard.com info@eagleyard.com fon +49.30.6392 4520


This data sheet is subject to change without notice. © eagleyard Photonics


Revision 0.91

### SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

#### Typical Measurement Results

#### Output Power vs. Current





Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

#### Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

eagleyard Photonics GmbH Rudower Chaussee 29 12489 Berlin GERMANY www.eagleyard.com info@eagleyard.com fon +49.30.6392 4520

This data sheet is subject to change without notice. © eagleyard Photonics



21 CFR 1040.10 and 1040.40



